开启分离人声背景声报错
D:\MyGithubClone\pyvideotrans.venv\lib\site-packages\torch\cuda\__init__.py:283: UserWarning:
Found GPU0 NVIDIA GeForce RTX 5060 Ti which is of cuda capability 12.0.
Minimum and Maximum cuda capability supported by this version of PyTorch is
(5.0) - (9.0)
warnings.warn(
D:\MyGithubClone\pyvideotrans.venv\lib\site-packages\torch\cuda\__init__.py:304: UserWarning:
Please install PyTorch with a following CUDA
configurations: 12.8 13.0 following instructions at
https://pytorch.org/get-started/locally/
warnings.warn(matched_cuda_warn.format(matched_arches))
D:\MyGithubClone\pyvideotrans.venv\lib\site-packages\torch\cuda\__init__.py:326: UserWarning:
NVIDIA GeForce RTX 5060 Ti with CUDA capability sm_120 is not compatible with the current PyTorch installation.
The current PyTorch install supports CUDA capabilities sm_50 sm_60 sm_61 sm_70 sm_75 sm_80 sm_86 sm_90.
If you want to use the NVIDIA GeForce RTX 5060 Ti GPU with PyTorch,
......
, in forward
input = module(input)File "D:\MyGithubClone\pyvideotrans.venv\lib\site-packages\torch\nn\modules\module.py", line 1775, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)File "D:\MyGithubClone\pyvideotrans.venv\lib\site-packages\torch\nn\modules\module.py", line 1786, in _call_impl
return forward_call(*args, **kwargs)File "D:\MyGithubClone\pyvideotrans.venv\lib\site-packages\torch\nn\modules\conv.py", line 548, in forward
return self._conv_forward(input, self.weight, self.bias)File "D:\MyGithubClone\pyvideotrans.venv\lib\site-packages\torch\nn\modules\conv.py", line 543, in _conv_forward
return F.conv2d(torch.AcceleratorError: CUDA error: no kernel image is available for execution on the device
Search for `cudaErrorNoKernelImageForDevice' in https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html for more information.
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1
Compile with TORCH_USE_CUDA_DSA to enable device-side assertions.
Traceback (most recent call last):
File "D:\MyGithubClone\pyvideotrans\videotrans\separate\st.py", line 37, in uvr
pre_fun._path_audio_(File "D:\MyGithubClone\pyvideotrans\videotrans\separate\vr.py", line 108, in path_audio
pred, X_mag, X_phase = inference(File "D:\MyGithubClone\pyvideotrans\videotrans\separate\utils.py", line 94, in inference
pred = _execute(File "D:\MyGithubClone\pyvideotrans\videotrans\separate\utils.py", line 65, in _execute
pred = model.predict(X_mag_window, aggressiveness)File "D:\MyGithubClone\pyvideotrans\videotrans\separate\lib_v5\nets_61968KB.py", line 116, in predict
h = self.forward(x_mag, aggressiveness)File "D:\MyGithubClone\pyvideotrans\videotrans\separate\lib_v5\nets_61968KB.py", line 69, in forward
self.stg1_low_band_net(x[:, :, :bandw]),File "D:\MyGithubClone\pyvideotrans\videotrans\separate\lib_v5\nets_61968KB.py", line 24, in call
h, e1 = self.enc1(x)File "D:\MyGithubClone\pyvideotrans\videotrans\separate\lib_v5\layers_123821KB.py", line 59, in call
skip = self.conv1(x)File "D:\MyGithubClone\pyvideotrans\videotrans\separate\lib_v5\layers_123821KB.py", line 26, in call
return self.conv(x)File "D:\MyGithubClone\pyvideotrans.venv\lib\site-packages\torch\nn\modules\module.py", line 1775, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)File "D:\MyGithubClone\pyvideotrans.venv\lib\site-packages\torch\nn\modules\module.py", line 1786, in _call_impl
return forward_call(*args, **kwargs)File "D:\MyGithubClone\pyvideotrans.venv\lib\site-packages\torch\nn\modules\container.py", line 250, in forward
input = module(input)File "D:\MyGithubClone\pyvideotrans.venv\lib\site-packages\torch\nn\modules\module.py", line 1775, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)File "D:\MyGithubClone\pyvideotrans.venv\lib\site-packages\torch\nn\modules\module.py", line 1786, in _call_impl
return forward_call(*args, **kwargs)File "D:\MyGithubClone\pyvideotrans.venv\lib\site-packages\torch\nn\modules\conv.py", line 548, in forward
return self._conv_forward(input, self.weight, self.bias)File "D:\MyGithubClone\pyvideotrans.venv\lib\site-packages\torch\nn\modules\conv.py", line 543, in _conv_forward
return F.conv2d(torch.AcceleratorError: CUDA error: no kernel image is available for execution on the device
Search for `cudaErrorNoKernelImageForDevice' in https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html for more information.
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1
Compile with TORCH_USE_CUDA_DSA to enable device-side assertions.